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Abstract An idealized model is presented, describing the flow of a thin film through a dilute porous layer of
immobile obstacles. Damping due to the obstacles extends the linear stability of the flow, where the depth-inte-
grated flowrates retrieved at each order of the film expansion are expressed in terms of hyperbolic functions. Three-
dimensional numerical simulations reveal a transition from steepening waves to stationary travelling waves for
increasing values of the damping parameter.

Keywords Linear stability · Lubrication · Porous media · Thin-film flows

1 Introduction

Thin-film flows over rough substrates or through porous layers, in which the motion of the fluid is partially impeded
by the presence of solid obstacles, occur in many settings. Examples include the manufacturing of magnetic storage
devices [1,2], the extraction of a porous layer from a fluid bath [3], lubrication of journal bearings [4], flows over
rough soil surfaces [5,6], flows through polymer brushes [7] and absorption processes in heat exchangers [8,9]. As
opposed to flows past a limited number of obstacles [10–12], where a computation of instantaneous velocities may
be feasible, porous layers contain a large number of obstacles and the fluid velocity must be averaged over a small
control volume or over many possible configurations of the obstacles contained within the porous layer.

The present study is concerned with the free-surface stability of a gravity-driven thin film flowing through a
dilute porous layer. The porous layer, with a thickness that is of the same order as the film thickness, is attached
to an impermeable substrate and the film is bound in the thin direction by the substrate and by a free liquid–air
interface. Obstacles contained in the porous layer are assumed to be neutrally wetting and consequently no meniscii
develop around individual obstacles piercing the free surface. Dissipation due to moving liquid–solid contact lines
can thus be ignored. Taking both inertial and surface-tension effects into account, our main interest is in the stability
and evolution of the free film surface as a function of the strength of damping of the flow due to the presence of the
porous layer.

An example of a dilute porous medium is a fibrous filter or polymer brush [7]. Fibrous porous media are char-
acterized by low solid-mass fractions, 0.0001 < φ < 0.1 [13,14]. The solid-mass fraction in fibrous layers is
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proportional to the averaged fiber properties, φ ∝ a2/L2
fiber, with average separation length Lfiber and fiber radius

a, and in a dilute layer, fiber radii are much smaller than the average fiber separation length, a � Lfiber.
Due to the dilute nature of the porous layer, viscous and inertial effects are assumed to be non-negligible [8,9],

in contrast to the usual situation in dense porous media. The drag of the obstacles upon the flow is coarse-grained in
the form of a linear Darcy damping term in the equations of motion, which take the form of the nonlinear Brinkman
equations. Originally posed for a dilute porous medium of spherical grains, Brinkmans’ linear model [15] was later
extended to incorporate inertial effects to describe, for instance, flow problems on porous-fluid interfaces [16],
Berman channel flow [17] and thermal convection in a fluid layer overlying a porous medium [18].

Here, the nonlinear Brinkman equations form the starting point for a thin-film approximation, in which the
liquid pressure and velocity are expanded in terms of a small parameter. These fields are then enslaved to the film
thickness, which becomes the effective degree of freedom of the model. At each order of the thin-film expansion
the depth-integrated flowrate can be expressed in terms of hyperbolic functions of the film thickness. The resulting
damped thin-film model, Eq. 14 in Sect. 2, is a strongly nonlinear Benney-type equation describing the evolution of
the free surface of the film.

Although the first step of the expansion leading to our model overlaps with the quasilinear film model presented
in [5,6], the emphasis in the present work is on the free-surface stability of the film, where the contribution of inertial
terms and the effect of surface tension at the liquid–air interface play an important role. The non-dimensional param-
eter which guides the strength of inertial effects is the effective Reynolds number, Re, and the validity criterium
for the film expansion demands that Re is of order unity. The effect of surface tension at the liquid–air interface is
measured by the effective inverse capillary number, Ca. However, the focus here is on the inverse Darcy number,
λ, which controls the strength of damping of the flow and scales with the (inverse) permeability of the porous
layer. The range of linear stability of the flow increases as a function of the inverse Darcy number, as discussed in
Sect. 3.1, below. Beyond the linear regime, three-dimensional numerical results for the strongly nonlinear model
are presented in Sect. 3.2, where the evolution of the film thickness over time, starting from an initial long-wave
perturbation of finite amplitude, is monitored. Finally, Sect. 4 contains the conclusions.

2 Model equation

Suppose a thin fluid film flows through a dilute layer of immobile obstacles placed on a rigid surface. The substrate
is inclined at an angle θ with respect to the horizontal, sustaining a gravity-driven flow. Obstacles are assumed to be
neutrally wetting, such that no meniscus develops at the solid-fluid boundary on individual obstacles. Coordinate x
denotes the streamwise (downslope) direction along the substrate, y denotes the spanwise direction and z denotes
the thin (surface normal) direction. The fluid is incompressible,

∇ · u = 0, (1)

where the velocity u = (u, v, w) is an ensemble averaged velocity, averaged over all possible configurations of the
obstacles. The momentum balance then takes the form of the Navier–Stokes equations of Brinkman type [15,19],

µ�u − µ

K
u = ∇ p − ρĝ + ρ(u · ∇u + ∂t u), (2)

with gravity vector ĝ = g(sin θ, 0, cos θ), fluid density ρ and permeability coefficient K . At the free surface of the
film, z = h(t, x, y), there is a balance of stresses in the normal direction, n · � · n = σκ , and in the tangential
direction, t · � · n = 0. Here, σ is the surface-tension coefficient, κ is the local curvature of the free film surface,
and the unit normal and tangent vectors at the free surface are n and t, respectively. The stress tensor reads as
� = µ[∇u+(∇u)T ]− pI, with unit tensor I. As the obstacles are neutrally wetting, effects of moving contact lines
at obstacles piercing the free surface can be ignored. Further study is required to extend the free-surface boundary
conditions above to include such effects.

The evolution of the film surface follows from the kinematic condition,

∂t h + ∇ ·
∫ h

0
udz = 0, (3)
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which forms the basis for the thin-film equation. Referring to the special geometry of the film, the characteristic
scale in the thin direction, H , is an order of magnitude smaller than the characteristic scale in the planar directions,
L , such that the ratio of these scales defines a small parameter, ε = H/L � 1, also referred to as the longwave
assumption [20]. Hence, coordinates x and y are scaled with L , while z and h are scaled with the characteristic
thickness H . In gravity-driven systems a natural choice for the characteristic planar velocity scale follows from the
lowest-order (Nusselt) solution, U = ρgH2/µ [20]. Assuming that the terms ∂x u, ∂yv and ∂zw in the mass balance
(1) are all of equal magnitude, it follows that the characteristic velocity scale in the thin direction of the film is an
order of magnitude smaller than the planar velocity scale, W = εU . The pressure scale is P = µU L/H2, which,
with the planar velocity scale, equals P = ρgL . Dividing Eq. 2 by ρg, it is seen that the inertial terms are scaled
by εRe, where the effective Reynolds number Re = ερUL/µ, is of order unity, Re = O(1). Damping terms scale
with the inverse Darcy number, λ = µU/ρgK . With the expression for the planar velocity scale U , the damping
parameter becomes

λ = H2/K . (4)

Given that H and ε remain small enough to be in the thin-film regime, the limit of diverging permeability, or
λ → 0, corresponds to an unimpeded flow. For a dense porous layer the permeability vanishes, with λ → ∞, and
inertial effects become negligible. In [21] it was argued that in the latter limit the time-dependent and viscous terms
should be modified, wereas the inertial terms should be replaced by a quadratic, Forchheimer drag. Consequently,
the present study is limited to the case of a dilute porous layer. In fibrous layers the permeability is proportional to
the average fiber spacing K 1/2 ∝ Lfiber such that the inverse Darcy number scales as λ ∝ H2/L2

fiber. For instance,
in an ordered square array of cylindrical fibers the permeability roughly equals K � L2

fiber/25 [14] and the inverse
Darcy number in such an array becomes λ � 25H2/L2

fiber. Because the flows considered here are in the thin-film
regime, the value of parameter λ may well be smaller than unity. For instance, using water as a working fluid and
an effective Reynolds number Re = 1, with ε = 0.1, the characteristic film thickness scale equals H = 10−13/3.
With the latter estimate, the values of the damping parameter for the porous layer heat exchangers considered in
[8,9], are within the range 0.44 ≤ λ ≤ 300.0. In [6] the values of the damping parameter used for comparison with
experimental results range from λ = 1.0 × 10−4 to λ = 49.0.

In the thin-film approximation the velocity components and pressure are expanded in the film parameter, e.g.,
u = u(0) + εu(1) + ε2u(2) +· · · . As W � U the lowest-order contribution in the thin direction vanishes, w(0) = 0.
Substituting the expansions in the non-dimensional mass and momentum balances, one obtains systems of ODEs
in z at each order of ε. These systems are directly integrable, yielding expressions for the velocity components
at each order, although the number of terms which is retrieved at one order and has to be plugged into the ODEs
at the next order rapidly becomes unmanageable for higher orders of the expansion. Adding higher orders to the
expansion increases the accuracy of the solution, however, at the cost of a reduced radius of convergence, where the
radius of convergence is related to the Reynolds number of the flow [22,23]. No-slip boundary conditions apply at
the substrate, whereas the balance of stresses at the free surface yields a stress-free condition, at orders i = 0, 1,

u(i)|z=0 = 0 and ∂zu(i)|z=h = 0. (5)

Collecting terms at order zero, one may reduce the momentum balances in the thin and spanwise directions to

∂z p(0) = 0 and {∂zz − λ}v(0) = ∂y p(0). (6)

When the atmospheric pressure at the free surface is set to zero, integration yields p(0) = 0, and, with the
boundary conditions (5), v(0) = 0. In the downslope direction one retrieves an inhomogeneous Sturm–Liouville
problem

{∂zz − λ}u(0) = ∂x p(0) − sin θ. (7)

Integrating the solution of (7) over the film thickness and applying boundary conditions, shows that the flowrate
at lowest order Bλ(h) = ∫ h

0 u(0)dz, equals

Bλ(h) = (λ−1h − λ−3/2 tanh λ1/2h) sin θ. (8)
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The expression for the lowest-order flowrate (8) was derived in [6] for a split-layer flow over a rough surface,
where (8) follows from [6, Eq. 7], by setting the roughness height k equal to the film thickness h. In the limit of
an unimpeded flow with zero damping, λ = 0, the flowrate equals 1

3 h3 [24], which can easily be observed from
a Taylor expansion of (8), Bλ(h) = 1

3 h3 − 2
15λh5 + O(λ2h7). Without damping terms, Eq. 3 reduces to a version

of the Burgers equation, describing wave-steepening and gradient amplification. Damping counteracts the gradient
amplification, leading to higher-order corrections to the cubic flowrate of a non-damped flow, where the leading
damping-related term is quintic in h.

Gradient-limiting surface-tension terms are assumed to enter the thin-film approximation below their formal
(third) order [20,24], preventing wave-steepening and shocks, which would be incompatible with the longwave
expansion. The surface-tension terms enter through the linearized boundary conditions on the pressure at the free-
film surface, for which one assumes that the planar gradient of h satisfies |∇ph|2 � 1.

The first-order pressure contribution then follows from an integration of the momentum balance in the thin
direction,

∂z p(1) = cos θ, (9)

obtaining

p(1)(t, x) = (h − z) cos θ − (εCa)�h. (10)

Here, the surface-tension term scales with the effective inverse capillary number, Ca = ε2σ/µU . If one takes
the planar length scale equal to the capillary length L = (σ/ρg)1/2, one sees, with the definitions for U and ε,
that the effective inverse capillary number equals unity and the surface-tension term is of first order in ε. Plug-
ging the components u(0), v(0) and w(1) into the continuity balance (1) and multiplying by H , one finds that the
remaining non-zero terms are of equal (first) order in ε. Velocity component w(1) then follows from integrating,
w(1) = − ∫

z ∂x u(0)dz. Next, the Sturm–Liouville problems for the planar velocity components at first order become

{∂zz − λ}u(1) = ∂x p(1) + Re{u(0)∂x + w(1)∂z + ∂t }u(0) and {∂zz − λ}v(1) = ∂y p(1), (11, 12)

complemented with boundary conditions (5), where the non-zero first-order pressure contribution sustains a non-
vanishing velocity component in the lateral direction. Note that the time derivative of u(0) in the right-hand side
of (11) leads to the appearance of the time derivative of h in the problem, for which the lowest-order estimate,
∂t h = −∂x

∫ h
0 u(0)dz, can be substituted. Integration of (11) and (12), leads to the flowrate

∫ h

0
(u(1), v(1))dz = ReAλ(h)∂x hêx − Bλ(h)∇(h cot θ − Ca�h) (13)

for unit vector êx = (1, 0). The flowrate contains a pressure contribution, with amplitude Bλ(h), and an inertial
contribution in the x-direction, with amplitude

Aλ(h) = λ−3Re

{
sinh ξ

cosh3 ξ

[
ξ − tanh ξ − sinh ξ + 1

4 sinh 2ξ + 1
2ξsech2ξ

]
+ 1

2 sech4ξ − sech3ξ + sechξ − 1
2

}
,

where ξ = λ1/2h, for brievety of notation. For unimpeded flows the leading term due to inertial effects has an
amplitude equal to 2

15 h6 (see [20,24]) which can also be observed from an expansion of the amplitude of the inertial
contribution, Aλ(h) = 2

15 h6 − 2187
5040λh8 + O(λ2h10). The leading correction due to damping is an octic term in the

film thickness. A combination of flowrates (8) and (13) gives the evolution equation for the film surface

∂t h + ∇ · [Bλ(h)êx + εReAλ(h)∂x hêx + εBλ(h)∇(Ca�h − h cot θ)] = 0; (14)

this is a fourth-order nonlinear equation that reduces to the Benney equation for zero damping, λ = 0. For large
values of the inverse Dacy number, corresponding to dense porous layers, the thin-film model (14) eventually
breaks down. In the latter case the length scale associated with the porous obstacles becomes dominant over the
characteristic film length L and one can no longer guarantee that velocity components in the stream- and spanwise
directions are an order of magnitude larger than the velocity component in the thin direction. In addition, for a dense
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porous layer the nonlinear Brinkman model loses validity and should be replaced by a model without inertial terms
and with an additional quadratic drag term [21]. To meet these validity criteria, the values of λ considered below
correspond to a dilute porous medium, λ ≤ 10. Finally, the validity of the thin-film expansion is limited to small
inertial effects, for which εRe � 1 (see [23]); this point is further discussed in Sect. 3.2.

3 Stability

3.1 Linear analysis

Consider the linear stability of the damped thin-film model, splitting the non-dimensional film thickness into a con-
stant base value, H0, and a small perturbation, h′ � H0, and substituting this decomposition in (14). For wavenumber
vector (α, β) and temporal growthrate �, the decomposition reads as h(t, x, y) = H0 + h′ exp(i(αx + βy) + �t).
Linearizing in h′ and keeping only the real part of the growth rate yields

� = εReAλ(H0)α
2 − εBλ(H0)(α

2 + β2)[cot θ + Ca(α2 + β2)]. (15)

In unimpeded film flows, instabilities can only occur if the film thickness exceeds the critical value 2
5 H3

c = cot θ ,
where the cubic term H3

c is related to the effective Reynolds number [20]. Hence, falling films on vertical substrates,
θ = π/2, are always unstable. In contrast, damped flows may be linearly stable even on a vertical substrate.

Growth rates for a two-dimensional flow (β = 0) on a vertical substrate are shown in Fig. 1a, for several values
of the inverse Darcy number and for Ca = 1.0 and Re = 1.0. Instability and growth of small perturbations occur
in the area enclosed by each curve and the (� = 0)-axis, where instability follows from a competition between
the fourth-order (damping) surface-tension terms and the second-order (amplifying) inertial terms. Increasing the
strength of damping due to the porous layer results in a flattening of the instability region, where the critical wave-
number, αc, at which zero growth occurs, decays rapidly as a function of the inverse Darcy number. The critical
wavenumber obeys the relation

αc = Ca−1/2(Reδλ(H0) − cot θ)1/2 (16)

for ratio δλ(H0) = Aλ(H0)/Bλ(H0) and the corresponding decay of αc as a function of the inverse Darcy number
is shown in Fig. 1b. The stability condition for the damped case follows from (16), for critical base thickness Hc,

Reδλ(Hc) = cot θ. (17)

In the limit λ → 0 one retrieves δλ(Hc) → 2
5 H3

c , which is evident from the Taylor expansions for Aλ(h) and
Bλ(h), discussed in the previous section.

3.2 Numerical results

The nonlinear regime of the damped-film model is explored by means of three-dimensional numerical simulations,
computing the evolution of the film surface on a vertical substrate and starting with an initial finite-amplitude per-
turbation. Using a finite-difference scheme and applying spatial-direction splitting, known as the alternate-direction
implicit (ADI) technique, as described in [25], the fourth-order problem (14) is solved on a square domain. ADI tech-
niques allow for relatively large time steps without causing numerical stability problems, here using δt = 2×(δx)3,
for spatial discretization step δx . Periodic boundary conditions are applied in the downslope and lateral directions,
mimicking a flow with a constant base thickness.

The initial field comprises a single longwave perturbation of small amplitude, imposed upon a constant base
thickness,

h(0, x, y) = H0 + 0.01 sin(2πx/D) sin(2πy/D) (18)
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Fig. 1 Neutral two-dimensional stability curves (a) on a vertical substrate, as a function of wavenumber α. Positive growth rates � of
small perturbations are enclosed between the curves and the (� = 0)-axis. Three curves are shown for inverse Darcy numbers λ = 0.5
(solid line), λ = 1.0 (dash–dotted line) and λ = 10.0 (dashed line). The critical wavenumber occurs at the intersection of each curve
with the (� = 0)-axis. Decay of the critical wavenumber αc, as a function of the damping parameter λ (b). In both figures Ca = 1.0 and
Re = 1.0

Fig. 2 Contour plots of the free surface at t = 61.0, for three values of the inverse Darcy number; λ = 0.01 (a), λ = 1.0 (b) and
λ = 10.0 (c). Shown are ten equidistant contour levels, ranging from h = 0.99 (black) to h = 1.01 (white). The downslope direction is
from top to bottom in the figures, where the domain length equals D = 5L in both directions

for domain length D = 5L and base thickness H0 = 1. Using water as the working fluid, other parameter values
are chosen as follows εRe = 0.1 with ε = 1.87 × 10−2 and εCa = 3.0 × 10−4. The number of grid points equals
N = 80 in both directions and the time step is δt = 5.0 × 10−4.

Snapshots of the film surface at t = 61.0, corresponding to 1.25 × 105 time steps, are shown in Fig. 2 for several
values of the damping parameter λ. When the values of the effective capillary and Reynolds numbers are fixed, the
numerical results reveal the presence of two regimes. In the weakly damped regime, for low values of the damping
parameter, λ ≤ 1, the initial long-wavelength perturbation develops into a pattern of steepening waves, as shown in
Fig. 2a, b. Initial wave tops develop into steep bulges, initial wave throughs flatten out. A downslope cross-section
of the film thickness at several times shows the steepening process in Fig. 3, where the cross-section at t = 61.0 is
taken from Fig. 2c.

For progressively larger values of the inverse Darcy number, the wave steepening process becomes progressively
weaker. When the flow is strongly damped, for instance, at inverse Darcy number λ = 10, a pattern of travelling
waves occurs, where the initial perturbation remains stationary with respect to a moving frame of reference; Fig. 2c.
Simulations running over longer times, up to t = 244.0, did not reveal late-time wave-steepening in the strongly
damped regime.

123



Free-surface stability of a damped thin-film flow 227

Fig. 3 Evolution of the free
surface, shown with
consecutive thickness
profiles, taken along the line
y = D/4, along the
downslope direction of the
domain for t = 0.0 (solid
line), t = 32.5 (dashed line)
and t = 61.0 (dash–dotted
line)

For the undamped (λ = 0) Benney equation, there exists a critical Reynolds number, above which finite-time
blow-up of solutions occurs [22,23]. The unphysical blow-up is a consequence of the strong nonlinearity intro-
duced by the expansion of the inertial terms. The demand on the Reynolds number for the thin-film approximation
to be valid is, hence, εRe � 1. Initial simulations with larger Reynolds number (εRe > 1) for the damped model
still show a blow-up. However, the exact stability criterium as a function of the damping parameter remains to be
determined. In this respect, interesting results are presented in [6], where a quasilinear version of (14) was used to
model flows with Reynolds numbers up to Re = 466.

4 Conclusions

A thin-film model is presented, describing the flow of a thin liquid film through a dilute porous layer and incorpo-
rating both nonlinear effects and the effects of surface tension at the free liquid–air interface. At each order of the
small-parameter expansion on which the model is based, the flowrate is expressed in terms of hyperbolic functions
of the film thickness.

The presence of the dilute porous layer results in an extended linear stability regime of the film, where, as opposed
to an unimpeded film flow, a damped flow on a vertical substrate may be linearly stable.

Numerical simulations, starting from a longwave initial perturbation, reveal the presence of two types of solutions.
For small values of the inverse Darcy number, corresponding to weak damping, patterns of steepening waves are
observed. For larger values of the inverse Darcy number, corresponding to stronger damping, the initial perturbation
is preserved and forms a periodic pattern of travelling waves.

Future study may establish for which values of the damping parameter the cross-over from the former to the
latter pattern occurs and how the critical value of the Reynolds number, associated to a finite-time blow-up, evolves
as a function of the damping parameter.
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